Interactive Ray Tracing

Steven Parker William Martin Peter-Pike Sloan
Peter Shirley Brian Smits Charles Hansen
Computer Science Department
University of Utah

Interactive Ray Tracing

- SGI Origin 2000
- 64 processors
- Display is only graphics hardware used
- Video recorded directly from screen
- 600 x 437 resolution

Why is this fast?

- Ray tracing performs well on modern processors
- For static scenes, runtime grows slower than number of objects rendered
- Parallelism

What we didn't do

- Reuse of information (from previous frames)
- Interpolation between pixels
- Explicitly optimized code (all C++)
- Complex load balancing
- Scan conversion (hardware or software)

Guiding principles

- KISS programs are good
- Careful attention to data locality is essential
- Careful attention to counting flops is not essential
 - Most things are re-computed instead of stored

Serial Efficiency

- Judicious use of C++ features
- Memory locality
- Minimizing expensive operations (sqrt, divide)
- Approximately three hours of optimizing for each hour of coding

Parallel Efficiency

- Dynamic load balancing
- Use Origin fetch&op counter
- Straightforward implementation
- Not tuned to topology of underlying architecture (bristled hypercube)

New Ray Tracing Mentality

- How can one achieve important visual cues without impacting interactivity?
- Soft shadows
- Directionally varying ambient term

Rich Primitives

- Ray tracing can accommodate very large and complex data
- Adding complex primitives is just as easy as in a batch ray tracer

Performance

- Rendering of isosurfaces from visible female CT dataset (900 Megabytes)
- More details of this technique in Visualization '98 paper

Efficiency of Data Access

For visible female:

L1 cache hits: 99.44%

L2 cache hits: 97.6%

Memory bandwidth: 2.1 MB/sec/processor

Teapot scene: 8 MB/sec/processor

Frameless Rendering

- Improves interactivity
- Lowers memory locality
- Relaxes synchronization
- Helpful if off by a factor of 5, but not by a factor of 20

Interactive Ray Tracer

- Useful tool for interactively exploring complex scenes on large machines
- · Good research tool for prototyping
- Attention to memory system critical for performance

Problems with current system

- Some scenes and algorithms just too slow
- Preprocessing precludes dynamic scenes
- No Antialiasing
- Variable frame rate

Planned Improvements

- New API for scene graph ray tracing
- Dynamic efficiency structures that amortize overhead cost
- Parallel front end for pixel reprojection
- 1000+ processor implementation

Futurism

- Good research tool now, but will it ever play video games?
- Obviates many graphics processor bottlenecks, but also introduces new ones

Future 1: Better Hardware

- Moore's Law-- in ten years CPUs will be 100x faster with 10x memory bandwidth
- Current system uses only 10% of memory bandwidth
- · Will likely still perform well in ten years
- Custom hardware?

Future 2: More CPUs

- Los Alamos cluster has 48 128CPU
 O2Ks with approximately 125x the raw
 power of our current machine
- Bandwidth to frame buffer would allow 40 uncompressed HDTV images per second to be ray traced
- Not yet practical for the desktop

Future 3: Better reuse of computation

- Pixels can be reprojected between frames
- New pixels are traced as needed

Video

Interactive Rendering using the Render Cache

Bruce Walter (iMAGIS)
George Drettakis (iMAGIS)
Steven Parker (Univ. of Utah)

Future 4: Hybrid

- Better CPU's just wait
- More CPU's just get more money
- More intelligence gotta work

Evangelism

- · This isn't hard
- This is fun
 - A good prototyping tool
- Necessary hardware is becoming affordable for research institutions

Overview

- Isosurfacing is performed implicitly at every pixel
- Maps well onto modern architectures
- Interactive for some datasets on some machines

Video

- SGI Origin 2000 using 50 processors
- 512 x 512 image
- 512 x 512 x 1734 voxels (900 Megabytes)

Visible Female data from the National Library of Medicine Visible Human Project

Outline

- I. Ray tracing isosurfaces
- II. Achieving interactivity

Isosurfacing for Analytic Functions

- f(x,y,z)=0
- ray tracing via root finding (e.g. Kalra and Barr '89)
- explicit polygonia tion (e.g. Stander and Hart '97)

Trilinear Cells are Easier

$$\rho(u,v,w) = (1-u) \quad (1-v) \quad (1-w) \quad \rho_{000} \quad + \quad (1-u) \quad (1-v) \quad w \quad \rho_{001} \quad + \quad (1-u) \quad v \quad (1-w) \quad \rho_{010} \quad + \quad (1-u) \quad v \quad w \quad \rho_{011} \quad + \quad u \quad (1-v) \quad (1-w) \quad \rho_{100} \quad + \quad u \quad (1-v) \quad w \quad \rho_{101} \quad + \quad u \quad v \quad (1-w) \quad \rho_{110} \quad + \quad u \quad v \quad w \quad \rho_{111}$$

Isosurfacing for a Trilinear Cell

Marching Cubes
Lorensen and Cline
('87)
Wyvill and Wyvill ('86)

Why Not Always Use Marching Cubes?

Marching cubes can generate millions of polygons

- Reduce by decimation (e.g. Shekhar et. al '96)
- Reduce by culling (e.g. Livnat and Hansen '98)

Isosurfacing for a Trilinear Cell

 $\rho(u, v, w) = (1 - u) \quad (1 - v) \quad (1 - w)$ $ho_{\hspace{-0.00cm}000}$ (1-u) (1-v) $ho_{\!\scriptscriptstyle 001}$ (1-u)(1-w) $ho_{\!\scriptscriptstyle 010}$ (1-u) $\rho_{\!_{011}}$ $ho_{\!\scriptscriptstyle 100}$ (1-v) (1-w) $ho_{\!\scriptscriptstyle 101}$ (1-v) $ho_{\!\scriptscriptstyle 110}$ (1-w)и w $ho_{\!\scriptscriptstyle 111}$

ray: $u = u_0 + tu_1$ $v = v_0 + tv_1$ $w = w_0 + tw_1$

> ray intersects cell where: $At^3 + Bt^2 + Ct + D = 0$

Previous Ray Tracing for Isosurfaces

- Marschner and Lobb ('94)
- Lin and Ching ('96)

Feature Comparison

Ray Tracing

- Implicit geometry
- Software shading

Marching Cubes

- Explicit geometry
- Hardware shading

Shadows Without Without With With

Performance Comparison

Ray Tracing

- Run time proportional to image size
- Highly scalable

Marching Cubes

- Run time proportional to data size
- Leverages conventional graphics hardware

How Fast is Ray Tracing?

- A single R10000 (195 Mhz)
- 512 x 512 image
- 512 x 512 x 1734 voxels (900 Megabytes)
 Visible Female data from the National Library of Medicine Visible Human Project
- Times vary from 22 to 418 seconds per frame

Optimizations

- Parallelism
- Hierarchical data representation
- Data layout for better locality

Parallel Implementation

- Implemented on SGI Origin 2000 ccNUMA architecture - up to 128 processors
- · Approximately linear speedup
- Load balancing and memory coherence are keys to performance

Hierarchical Data Representation

- Skip over cells which do not contain an isosurface - Wilhelms and van Gelder ('90)
- Keep "macrocells" which contain the min/max values for contained cells

Number of Hierarchy Levels

- Traversal from cell to cell is cheaper than moving up and down levels
- Would like to skip large empty regions
- We use 3 or 4 levels in practice

Data Layout (Bricking)

- Optimizing for memory locality
- Two levels (bricks and metabricks)
- Common trick (e.g. Cox and Ellsworth '97)

Data Layout (Bricking)

• Brick sizes (Cache line and page sized cubes)

16 bit data: 5³ metabricks of 4³ bricks
 32 bit data: 6³ metabricks of 3³ bricks

Combining Hierarchy and Bricking

- Requirements of hierarchy are different than the brick sizes
- Traversal at finest level of hierarchy can cross brick boundaries
- Must compute indices into bricked array

Indexing

Consider 6x6x6 bricks of 3x3x3 bricks:

```
index = (x/3/6)*6*6*6*3*3*3*ny*nz +
  (y/3/6)*6*6*6*3*3*3*nz +
  (z/3/6)*6*6*6*3*3*3 + (x/3%6)*6*6*3*3*3
  + (y/3%6)*6*3*3*3 + (z/3%6)*3*3*3 +
  (x%3)*3*3 + (y%3)*3 + (z%3)
```

- Very expensive
 - Integer division and modulus

What about that function?

```
index = (x/3/6)*6*6*6*3*3*3*ny*nz +
(y/3/6)*6*6*6*6*3*3*3*nz +
(z/3/6)*6*6*6*6*3*3*3 + (x/3%6)*6*6*3*3*3 +
(y/3%6)*6*3*3*3 + (z/3%6)*3*3*3 +
(x%3)*3*3 + (y%3)*3 + (z%3)
index = f_X(x) + f_V(y) + f_Z(z)
```

Efficiency of Data Access

For isosurfacing, lookup 6 index values for 8 data value lookups (instead of 24)

L1 cache hits: 99.44%

L2 cache hits: 97.6%

Memory bandwidth: 2.1 MB/sec/processor

Optimization Results

View	Initial	Bricking	Hierarchy
			+ Bricking
Skin: front	22.4	20.8	8.5
Bone: front	38.4	33.6	8.3
Bone: close	57.6	56.0	12.2
Bone: from feet	417.6	92.8	9.9

Times in seconds for a 512 x 512 image on 1 processor

Where time is spent

IsosurfaceTraversalIntersectionShadingSkin55%22%23%Bone66%21%13%

Results

- Gigabyte dataset (1734x512x512)
- 8-15 Frames per second on 64 processors
- Compare to Marching Cubes:
 - bone isosurface: 9.9 million triangles
 - skin isosurface: 6.7 million triangles

Summary

- Useful tool for interactively exploring large datasets on large machines
- Is complementary to marching cubes
- Attention to machine architecture critical to performance

Future Work

- Application to unstructured data
- Frameless rendering
- Ray tracing for other types of scientific data (streamlines, slices, others?)
- Time varying data (> main memory)
- Higher order interpolation methods
- Distributed implementation

Thanks to:

- Richard Coffey, SCI Group, SGI Support
- Jamie Painter at the Advanced Computing Laboratory, Los Alamos National Laboratory
- DOE ASCI and AVTC
- NSF
- Utah State Centers of Excellence
- SGI Visual Supercomputing Center